Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Wu Rao and Wei-Xiao Hu*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China

Correspondence e-mail: Huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.036$
$w R$ factor $=0.105$
Data-to-parameter ratio $=7.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Propyl 3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazine-1-carboxylate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$, was prepared from propyl chloroformate and 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine. The central six-membered ring has a boat conformation. In the crystal structure, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}[\mathrm{N} \cdots \mathrm{N}=$ 3.015 (4) \AA] and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}[\mathrm{C} \cdots \mathrm{O}=3.265$ (6) \AA] hydrogen bonds to form extended chains along [100].

Comment

1,2,4,5-Tetrazine derivatives have a high potential for biological activity, possessing a wide range of antiviral and antitumour properties, and these derivatives have been widely used in pesticides and herbicides (Sauer, 1996). In a continuation of our work on the structure-activity relationships of 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004), we have obtained a yellow crystalline compound as the product of the reaction of propyl chloroformate and 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine. The structure of our product, (I), was solved using single-crystal X-ray diffraction.

(I)

The molecular structure of (I) is illustrated in Fig. 1. In (I), atoms N2, C3, N5 and C6 are coplanar [deviations within 0.0348 (16) Å] and atoms N1 and N4 deviate from the plane by 0.456 (5) and 0.380 (5) \AA, respectively, indicating a boat conformation. In the crystal structure, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}[\mathrm{N} \cdots \mathrm{N}=3.015(4) \AA$ A $]$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}[\mathrm{C} \cdots \mathrm{O}=$ 3.265 (6) \AA] hydrogen bonds to form extended chains along [100] (see Table 1 for hydrogen-bond geometries).

Experimental

The title compound was prepared according to the procedure of Rao \& Hu , (2004). A solution of the compound in ethanol was concentrated gradually at room temperature to afford yellow prisms (m.p. 414-415 K).

Received 9 May 2005 Accepted 22 June 2005 Online 9 July 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=322.36$
Orthorhombic, Pna $_{1}$
$a=10.212(3) \AA$
$b=10.051(2) \AA$
$c=16.611(3) \AA$
$V=1705.0(7) \AA^{3}$
$Z=4$
$D_{x}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.967, T_{\text {max }}=0.983$
1699 measured reflections
1584 independent reflections 997 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
1584 reflections
219 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10.7-12.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, yellow $0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\max }=25.2^{\circ} \\
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 12 \\
& l=-19 \rightarrow 1
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: 0.3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0614 P)^{2}\right. \\
& +0.0145 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.012 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.32	$3.015(4)$	139
$\mathrm{C} 14-\mathrm{H} 14 \cdots 1^{\mathrm{i}}$	0.93	2.34	$3.265(6)$	172

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{5}{2}, z$.
H atoms were included in calculated positions [$\mathrm{C}-\mathrm{H}($ methyl $)=$ 0.96 , other $\mathrm{C}-\mathrm{H}=0.97, \mathrm{~N}-\mathrm{H}=0.86 \AA$] and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ equal to 1.2 (or 1.5 for methyl H atoms) times $U_{\text {eq }}$ (parent atom). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Version 1.05; Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995) XCAD4. University of Marburg, Germany.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, W. X., Rao, G. W. \& Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 11771181.

Hu, W. X., Sun, Y. Q., Yuan, Q. \& Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.
Rao, G. W. \& Hu, W. X. (2004). J. Chem. Res. 6, 408-409.
Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

